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of A and B. Subsequently,lJ the method was extended to the 
treatment of conformational problems, the assumption being 
made that the stable structure of a molecule can be regarded 
as the result of a chemical reaction (or orbital interaction) 
between the different functional groups into which the mole­
cule can be dissected conceptually. The advantage of such an 
approach is that the description of the total electronic structure 
6f a molecule is simplified considerably if the molecule can be 
treated as two or more assemblies of atoms, i.e., functional 
groups, rather than individual atoms.8 The latter forms the 
basis of the LCAO-MO formalism. The approach has been 
justified by the observation that a molecular fragment is a 
near-transferable quantum mechanical entity.73'9 

Although the PMO formalism requires a definition of the 
orbitals of the interacting moieties regardless of the nature of 
the problem, there are some fundamental differences between 
the analysis of a chemical reaction and the analysis of a con-
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formational effect. In the PMO interpretation of a reaction, 
o--type orbital interactions between the reactants are empha­
sized because these interactions lead to the bond that joins the 
reactants. However, in the PMO interpretation of a molecular 
conformation, the interacting moieties or "building blocks" 
are obtained by dissection of the bond joining them; and ir-type 
orbital interactions between these fragments are subjected to 
analysis. It is assumed implicitly that the <r-bond orbital which 
represents the dissected bond is conformationally invariant so 
that, in terms of tr-type orbital interactions between them, the 
fragments are considered to remain united. The fragmentation 
of the molecule is thus a conceptual one, with the notion of 
building blocks having been introduced to simplify the de­
scription of the molecular electronic structure. 

A second difference between PMO analyses of reactions and 
conformational effects becomes evident when an attempt is 
made to obtain the orbitals of a fragment. A real molecular 
system is characterized by its geometry and by the number of 
electrons it contains. These two quantities define an object for 
an SCF-MO calculation. Thus, an attempt to derive the or­
bitals of a fragment within the SCF-MO approximation re­
quires specific choices for the geometry of this fragment and 
the number of electrons which it contains, i.e., whether the 
fragment should be treated as a radical, a cation, or an anion. 
To avoid the latter problem, one might provide7' PMO inter­
pretations of the results of SCF-MO calculations in terms of 
fragments obtained by the Extended Hiickel Molecular Orbital 
(EHMO) method.10 The orbitals and orbital energies gener­
ated by this procedure do not depend upon the number of 
electrons in the system, unlike those generated by SCF-MO 
methods. However, when the analysis of an SCF-MO result 
is performed in this way, using EHMO fragments, the inter­
pretation would seem to be less rigorous than the calculation 
itself. If the objectives of theoretical conformational analysis 
include both the results of the computation and the interpre­
tation of these results, it seems reasonable to expect that both 
should be obtained to the same degree of rigor. 

The commonly employed PMO formalism has been derived 
within the framework of a one-electron Hamiltonian (e.g., the 
so-called "one-electron molecular orbital" procedure7s)- In the 
usual application of such a PMO procedure, the interaction 
energy between two nondegenerate orbitals is given as directly 
proportional to the square of the overlap integral and inversely 
proportional to the orbital energy difference, the proportion­
ality constant being unspecified. 

The qualitative nodal properties of the orbitals of a large 
number of simple fragments are available from standard 
sources.73 With these in hand, the conformational dependence 
of the overlap integrals associated with different conforma­
tional arrangements of two fragments can be estimated qual­
itatively. This is done by inspection of the bonding and anti-
bonding relationships between the fragment orbitals in dif­
ferent conformations. The energy differences between the 
orbitals of different fragments are estimated from appropriate 
experimental and/or theoretical data on molecules that may 
contain the same or similar orbitals.7' When the estimation of 
overlap integrals is difficult, the conformational analysis has 
been restricted to effects of orbital energy differences 
only.7h 

These various assumptions allow relative stabilities of dif­
ferent conformations to be estimated qualitatively. A rigorous 
quantitative treatment is not possible because, even when 
overlap integrals and orbital energy differences between 
fragments can be evaluated, it is still necessary to provide a 
value for the proportionality constant. The PMO method 
therefore invariably leads to a qualitative rationalization of 
conformational effects based upon the consideration of certain 
specific orbital interactions in the system. The validity of such 
rationalizations is then tested by making predictions con­

cerning the behavior of the total molecular wave function and 
checking these predictions with explicit SCF-MO calcula­
tions. 

The intent of the foregoing discussion is to establish a need 
for a PMO procedure based upon SCF-MO wave functions. 
Such a procedure would have two advantages over the present 
methods: the ambiguities inherent in the use of different levels 
of approximation for a computation and the interpretation of 
this computation would be removed; and the procedure would 
provide a quantitative mechanism for the analysis of SCF-MO 
results. 

Theory 

(A) Derivation of Orbital Interaction Energies. Let the set 
of n atomic orbitals x/ be represented by the row vector x» and 
the set of n molecular orbitals <£, by the row vector <f>. In the 
LCAO-MO representation, <j> is given by 

where 

and 

<t> = x c 

4> - (<t>\<t>2 • • • <t>n) 

O) 

(2) 

X = (XlX2 • • • Xn) ( 3 ) 

and C is an n X n coefficient matrix. For a closed shell, C is a 
solution of the Fock equation 

FC = SCe (4) 

We assume that eq 1 and 4 refer to the composite system AB 
which contains the closed shell constituents A and B. Without 
loss of generality, the row vector x can be written as 

X = (XlX2 • • • XmXm+\ • • • Xn) (5) 

in which xi,X2,- .-,XmEA, and Xm+i.Xm+2. XnEB. 
The Fock matrix F, one-electron Hamiltonian matrix H (i.e., 
the matrix representation of the kinetic and nuclear-electron 
attraction operators), and overlap matrix S of the composite 
system can be partitioned as follows: 

F-P" 
L F V 

H = \ H A
 t 

S=P" 
L SV 

F^B] 

FB J 
a AB ] 
Ha J 

SAB ] 
SB J 

(6a) 

(6b) 

(6c) 
AB' 

the elements of the matrices M^, Mg, and MAB (M = F, H, 
S) being defined by 

( M „ ) y - (xi\M\Xj) Xi. Xj E A 

(MB)0= (Xi\M\xj) Xi. Xj E B (7) 
(MAB),J = <X/|M|Xj) Xi E A, Xj E B 

with M as the operator for M. 
The molecular orbitals and Fock equations of A and B may 

be written as 

<t>A° = XACA0; 4B0 = XBCB° (8) 

FA°CA° = S^0CA - 4
0 ; FA 0 CB 0 = Sfl°Cfl0eB° (9) 

The superscript zero is a reminder that eq 8 and 9 refer to 
isolated systems. 

The molecular orbitals of an isolated system are orthonor-
mal. Thus, for AB, we have 

(0,| d>j) = QtSC; = 5,; 

/ , ; = 1 ,2 , . . . ,« 

(10) 
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where C, is the column vector of C, 

rc„ 
Q= Cli (11) 

Equation 10 is equivalent to eq 12 

CSC = I (12) 

The corresponding expressions for A and B are 

(C^)+ S„°C„° = 1; (C8
0VS11

0C8
0 = 1 (13) 

We can now examine exact and approximate relationships 
between the molecular orbitals and orbital energies of the 
composite system and the molecular orbitals and orbital 
energies of its constituents with the choice 

(14a) XA = (xiX2- • • Xm) 

and 

XB - (Xm+iX»i+2 Xn) (Hb) 

(a) Exact Relations. The following matrices are introduced 
to simplify the notation: 

* " [o 

Ho" 
s 0 = r 
e 0 = T 

This simplifies eq 9 to 

o 

0 

0 1 
° 1 
Cfl°J 0 1 H f i°J 

° 1 
SB0J 

° 1 eB
0J 

(15a) 

(15b) 

(15c) 

(15d) 

(15e) 

(16) 

(17) 

F0C0 = S°C°e0 

and eq 13 to 

(C°)tS°C° = 1 

Furthermore, the molecular orbitals 4>i° defined by eq 18 

*,-° = xC,° (18) 

correspond to the molecular orbitals of A if; E 1,2,... ,m, 
and to those of B if / £ m + 1, m + 2 n. 

The transformation of C0 into C can be achieved by a matrix 
T, defined by 

C = C0T (19) 

Here the physical meaning of the matrix T is that it expresses 
the molecular orbitals of AB in terms of linear combinations 
of the molecular orbitals of A and B. 

By using eq 17 and 19, T can be expressed as 

T = IT = (C0)+S°C°T = (CVS0C (20) 

Let us decompose F as follows: 

F = F 0 + 5F0 (21) 

where 

6F° •[ 
F^ — F^0

 ¥AB 

FB - F B 0 . - F ^ B ' IB 

Then, from eq 19 and 21, eq 4 can be rewritten as 

(F0 + 5F°)C°T = SCe 

(22) 

(23) 

Premultiplying both sides of eq 23 by T+(C0)*, i.e., C+, leads 
to 

V [(C0Yf0C0 + (C°)+aF0C°]T = C+SCe (24) 

From eq 12, 16, and 17, eq 24 can be rewritten as 

T V + A)T = e (25) 

where 

A = (C°)+5F°C° (26) 

Equations 19 and 25 provide exact relations between C and C0 

and between e and e0. 
An alternative method for the determination of e can be 

derived by combining eq 19 and 23. 

(F0 + 5F°)C°T = SC0Te (27) 

Premultiplying both sides of eq 27 by (C°)f leads to 

(e0 + A) T = STe (28) 

where 

S = (C°)tSC° (29) 

Notice that S is the overlap matrix between the atomic orbitals 
Xi, while S is the overlap matrix between the molecular orbitals 
<t>i°. For the i'th orbital energy e„ eq 28 becomes 

[(e0 + A) - e,S]T, = 0 (30) 

(b) Approximate Relations. To simplify the discussion, we 
assume that 

S . 0 = SA and S s 0 = S* (3D 

That is, the geometries of the isolated species A and B do not 
change in the composite system AB. Consequently, if; and j 
are part of the same fragment (i.e., i j ' g 1, 2,. . . , m refers 
to A and i,j (E m + 1, m + 2, . . . , n refers to 5), the block 
diagonal form of C0 and eq 13 and 31 lead to 

Sn = (C,°)tSC,° = S, (32) 

Approximate solutions of e, and T, may be obtained from 
eq 30 by using the perturbational formalism.4c'd We introduce 
the following expansions: 

e/ = e,-<°> + e,<" + e,-<2> + . . . (33a) 

T, = T,<0) + T," ' + T,-<2> + . . . (33b) 

S=1S«°) + S( | ) (33c) 

h = e0 + A 

= h(0> + h(') (33d) 

With eq 30 and 33 and the following choices 

S<°> = 1 (34a) 

S ^ = S - I (34b) 

h<o) = e0 (34c) 

h(') = A (34d) 

application of the perturbational formalism4c'd leads to the 
following expressions for e, and T, to second order: 

= e0 + A-- + V - ^ ei°Sij)2 
(35) 

/Vi e/ 

, -7 , - , . 0 _ p . O 

-w^m <*•> 
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ji e,° - ej0 

, v (hk-e,0S,kK£Llk-e,0§,k) 
hi (e,° - ej°Xe,0 - ek°) 

In eq 35 and 36, it has been assumed that there is no degener­
acy in je,°J. In the derivation of eq 36a the orthonormality 
condition 

j * i (36b) 

QfSC/ = T,-+ST, = 1 (37) 

has been used. 
(c) Orbital Interaction Energies. The derivation presented 

above is based upon the SCF-MO formalism. We now con­
sider how this can be reduced to the commonly employed PMO 
formalism. If it is assumed that the molecular orbitals of A and 
those of B have negligible overlap integrals, i.e., 

S s S 0 (38) 

then Sjj s O, when i and; refer to different fragments (e.g., 
/ G A andy G B). Thus, eq 35 is simplified to 

e, = e,0 + A,-, + Z (39) 

If the Fock matrices that describe A, B, and AB are approxi­
mated by electron density independent matrix representatives 
such as those used in the simple and extended Hiickel molec­
ular orbital methods, we have 

F,,= F ^ and F8 = Ffl° 

under the condition of eq 32. Consequently 

A,-,- = O for all i 

(40) 

(41) 

since F-4 — F-4
0 = O and Fg — Fg0 = O. Frequently it is as­

sumed that 

Xj S kS,j (42) 

with k a nonzero constant. This allows eq 39 to be rewritten 
as 

Although eq 43 is a well-known PMO formula, it should be 
noted that the approximations made in eq 38 and 42 are ac­
tually incompatible. An alternative PMO expression might, 
therefore, be derived from eq 35 by making use of eq 41 and 
42, i.e., 

.-,,,Hjfe^t. 
j*i 

O _ „0 (44) 

The term (kStj)2/(e,0 - ej°) in eq 43 or [S0(Ic - e,°)]2/(e,° 
- ej°) in eq 44 is said to be the orbital interaction energy be­
tween <p,° and 4>j°. The effect of eq 33 and 42 is to cause this 
term to vanish when <p,-0 and 0,-° refer to the same frag­
ment. 

On the basis of this analysis, it seems appropriate to desig­
nate the quantity 

which appears in eq 35, as the LCAO-SCF-MO orbital in­
teraction energy between <p,-0 and <pj°. 

(B) A Quantitative Definition of Fragment Orbitals. We 
consider the eigenvalue problem 

M-4Q4 = S - 4 Q 4 ^ (46) 

in which M-4 is a matrix representative of a certain "model" 
energy operator associated with or related to a fragment A, 

whose orbitals 4>A ( - XACA) andorbital energies iA can be 
defined. In a purely formal sense, M4 might correspond to H-4 
or F-4 of eq 6. The matrix elements of H-4 do not depend upon 
the molecular orbital coefficients C, and the choice of H-4 will 
therefore produce unique <pA and S-4 so long as the geometry 
of A remains unchanged. This is not so in the case of F-4. 
However, because of the near-transferability of Fock matrix 
elements,9a_d this is not a serious problem. 

The PMO formalism derived in the previous sections re­
mains the same when the matrices F-4

0, C-4 ",^and^ ° are re­
placed by the corresponding model matrices M-4, C-4, and S-4, 
respectively. An important feature of the fragment orbitals 
defined by eq 46 is that the assignment of electron occupancies 
to such orbitals is not rigorous, because the matrix M-4 used 
in eq 46 does not refer to an isolated species, in which the 
electron occupancies of the orbitals have been defined uniquely. 
Like bond functions and hybrid orbitals, fragment orbitals 
should be regarded as a set of building blocks which permit 
the molecular orbitals and energetics of a composite system 
to be analyzed conveniently. 

(C) Energy Partitioning and Population Analysis in Terms 
of Fragment Orbitals. In the LCAO-SCF-MO theory, the sum 
of all the occupied orbital energies differs from the total energy 
and from the total electronic energy. In addition, eq 45, which 
defines an orbital interaction energy, is only an approximation. 
Consequently, the rationalization of the total energy behavior 
of a system in terms of orbital interaction energies requires the 
singling out of certain specific orbital interactions and cor­
responds to an incomplete energy partitioning scheme. 
Moreover, when the fragment orbitals of eq 46 are used for a 
PMO analysis, electron occupancies have to be provided to 
these fragments to permit the calculation of "two-electron 
stabilizing" or "four-electron destabilizing" interactions. To 
free our orbital interaction scheme from this arbitrariness, we 
consider a simple but complete energy partitioning scheme 
based upon fragment orbitals. In addition, a population anal­
ysis is also considered in terms of fragment orbital bases. 

(a) Energy Partitioning. The total electronic energy E of the 
composite system AB, as obtained by direct SCF-MO calcu­
lation, is 

E = tr[(H + F)D] 

in which the density matrix D is given by 
OCC 

D = L C1-Q
+ 

Because of eq 19, C,- becomes 
H 

*~/ ~~ 2w ' pi Q? 
P=\ 

so that D can be rewritten as 

D = E upPcp°(cpy 

(47) 

(48) 

(49) 

+ L aM[cP
0(Cq°Y + cqHcp

oy] (50) 
p>q 

where 
OCC 

1^Pq ~ 2_ J pi J qi (51) 

Combination of eq 47 and 50 leads to the energy partition­
ing 

E = L OpptrKH + F)CPHCP
0Y] 

n 

+ L a»OTtr{(H + F)[C/(C,0)t + C,0(C/)t]) (52) 
p>q 

In the second term of eq 52, p and q may refer to the same 
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fragment or to different fragments. When p and q refer to the 
same fragment, e.g., A, we obtain for the second term 

«Mtr{(H + F)[C/«V)t + <V(<V)t]| 
= 2cowtr[(H/< + FA)(CA°)p(CA°)ql] (53) 

where (CA
 0 ^ is the pth column vector of CA °. If p E A and 

q G B, the following expression is obtained 

«p,tr{(H + F)[CZ(C17O)+ + C,°(C„°)t]} 
= 2cowtr[(H4fi + FAB)(CB°)q-m{CA°)^] = A£M (54) 

The energies given by eq 53 and 54 may be referred to as the 
intrafragment and interfragment interaction energy terms 
between <f>p° and 4>q°, respectively. 

(b) Population Analysis. The population analysis'' on AB 
is now considered in terms of the fragment orbital bases. From 
eq 1 and 19, <f>/ becomes 

*/ = E <t>P°Tpi (55) 
p 

Thus, the total number of electrons N of AB can be decom­
posed as 

OCC 

= E QPP + 2 E Qpq (56) 
p P>I 

where 
OCC 

QPq = 2Z(<t>P°\<l>q
0)TpiTqi 

i 

OCC „ 

= 2 E V A (57) 
2 W is the net population of <t>p°, and Qpq is the overlap popu­
lation between 4>p° and <j>q°. The gross population g/> of 4>p° 
is defined by 

QP = QPP+ E 6/., (58) 

The energy partitioning just described contains no arbi­
trariness other than the definition of fragment orbitals itself. 
Likewise, the population analysis contains no further as­
sumptions than those present in the population analysis of an 
atomic orbital basis. Therefore, these analyses are more 
complete than the PMO analysis. 

(c) Configuration Analysis. The PMO, energy partitioning, 
and population analyses considered so far do not represent the 
only solutions to the description of the wave functions of 
composite systems. It is appropriate to draw attention to an 
alternative method, which is known as configuration analysis.12 

This method emphasizes the expansion of the total wave 
function $ of AB in terms of the ground and excited configu­
rations of A and B. 

The Hartree-Fock wave function $ of AB is given as a 
Slater determinant constructed from the molecular orbitals 
<t>. 

* = V7TV?det'*'*' ' ' ' *^/ 2^/ 2 l ^59) 

From eq 1, 18, and 19, we obtain 

0 = 00T (60) 

Thus, <£ can be expanded as follows: 

* = fl0*o + E a?*f + E 4 ' * / / + • • • 
+ ZaHj;;; #f/.v; + . . . (61) 

Journal of the American Chemical Society / 99:5 / March 

where $o is the normalized Slater determinant constructed 
from the occupied molecular orbitals of A and B, and ao is 
its coefficient. $?/.'.'.' results from $o when the occupied mole­
cular orbitals 0,°, <t>j°, ... are replaced by the unoccupied 
molecular orbitals of A and/or B (4>k°, cpi0, • • •, respectively, 
with a)] \•; as its coefficient).The magnitude of the coefficient 
of each Slater determinant has been used as a weighting factor 
for the electronic configuration represented by the Slater de­
terminant. '2 However, since the Slater determinants resulting 
from the expansion of 4> are not orthogonal in general due to 
the nonorthogonality between \<t>A j and \<$>B], their coefficients 
do not correspond rigorously to weighting factors. 

Results 
To exemplify the procedure developed herein, computations 

have been performed on two compounds whose conformations 
have been discussed previously using qualitative PMO argu­
ments. These compounds are propylene7*1-8 and ethane.17g The 
problem is to analyze the interaction of a methyl rotor (frag­
ment A) with a vinyl group (fragment B), in the case of pro­
pylene, or with another methyl group in the case of ethane. The 
computations on propylene were performed with the STO-3G 
basis set13a of GAUSSIAN 70.5a The calculations on ethane were 
performed using both the STO-3G and the 4-31Gl3b basis 
sets. 

The orbitals of the A and B fragments of the molecule AB 
were obtained with eq 46, taking FA and F# of AB as M^ and 
Mg, respectively. The justification for this choice is the ob­
servation, already described,93*1 that the Fock matrix elements 
of a molecular fragment are nearly transferable. As will be 
shown, this seems quite reasonable. With these choices, Ay = 
O and S1J = 5/,, if (' and_/ belong to the same fragment. 

(a) Two-Electron Stabilizing and Four-Electron Destabilizing 
Interactions. To facilitate the discussion, one might wish to 
employ terminologies such as "two-electron stabilizing" and 
"four-electron destabilizing" interactions. For this purpose, 
electron occupancies have to be assigned to the fragment or­
bitals. Consideration of only the interaction between two 
fragment orbitals, <j>i° and </>j°, leads to the expression 

e, + ej = (e,° + ej°) 
+ S1Ji-IA0 + (e,° + ej°)Su]/(l - S0

2) (62) 

from the corresponding secular determinant, eq 63. 

When it is assumed that both <f>,0 and <j>j° are doubly occupied, 
the term 

2S0I-IAu + (e,° + ej°)5,j]/(l - S0
2) = Ae0 (64) 

may be regarded as the four-electron destabilizing interaction 
energy between <t>,° and 4>j°. If it is assumed that only 0,° is 
doubly occupied, the term 

2(A,, - S1Je1
0Me,0 - ej°) = Aeu (65) 

approximates the two-electron stabilizing interaction energy 
between tf>,0 and <j>j°. In eq 64 and 65, the factor 2 enters be­
cause of the double occupancy of an orbital. 

The mathematical form of eq 64 has an important conse­
quence. In semiempirical SCF-MO methods such as CNDO14 

and INDO,15 which invoke the zero differential overlap ap­
proximation, Sjj = O for i 7* j . Therefore, for wave functions 
generated by such methods, the four-electron destabilizing 
interaction energy between any pair of fragment orbitals is zero 
by definition. That is, when the two fragment orbitals interact, 
the destabilization of the higher lying orbital and the stabili­
zation of the lower lying orbital are equal.4*1 This is not the case 
in the extended Huckel and ab initio methods. It follows that 
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Table I. The Computed" Total Energy of the Eclipsed (E) and Staggered (S) Conformations of Propylene, and the Orbital Energy and 
Nodal Property of the HOMO* 

Conformation Exoi, au SHOMO, au 4>HOMOC 

E 
S 

-115.656 70 
-115.654 57 

-0.3050 
-0.3033 

0.98OTTCC - 0.2967TCH, - 0.034TT*CC + 0.040TT*CH3 

0.981 ircc ~ 0.302ircH3 - 0.0307r*Cc + 0.035TT*CH3 

a STO-3G calculations. b The following geometry was employed: rcH = 1.09 A, rC-c = 1.534 A, r c =c = 1.337 A. Valence angles associated 
with the C=C bond are 120°, and all other valence angles are 109.5°. ' A positive or negative sign for an orbital coefficient means that, in 
the HOMO, the group orbital has, respectively, the same phase or the opposite phase of that shown in Figure 1. 

Table II. The Orbital Energies (e,0) and Gross Populations (Q1) 
of the 7r-Type Fragment Orbitals of Propylene 

4>i° 

T C H 3 

TCC 

7T*CC 

7T*CH3 

Eclipsed 

e,0, au 

-0.5268 
-0.3242 

0.3115 
0.6992 

Qi 

1.984 
1.991 
0.016 
0.009 

Stagg 

e,-0, au 

-0.5219 
-0.3240 

0.3214 
0.7002 

ered 

Qi 

1.985 
1.993 
0.015 
0.007 

any attempt to produce a nonzero four-electron destabilizing 
interaction energy by these semiempirical SCF-MO methods 
is inappropriate, because it introduces a logical inconsisten­
cy. 

(b) Computational Examples. Propylene. The calculations 
on the staggered (S) and eclipsed (E) conformations of pro­
pylene are summarized in Tables I—III. For these conforma­
tions, the qualitative analyses7 d g have focused upon the in­
teractions between w and w* methyl group orbitals and the TT 
and 7T* orbitals of the double bond. These are illustrated 
schematically for the E conformation in Figure I. Our present 
objectives are as follows: (i) to determine the quantitative 
nature of the various 7r-type two-electron and four-electron 
interactions among the fragment orbitals; (ii) to assess quan­
titatively the degree to which a consideration of these inter­
actions alone simulates the total energy behavior of the mol­
ecule. 

E S 
From the T matrices of E and S, it is found that the 

HOMO's of these conformations can be written as linear 
combinations of xcc , T*CC> ircH3, and X*CH3 , as shown in 
Table I.16 The HOMO's are dominated by an out-of-phase 
combination of TTCC and 7TcH3, the former being the major 
component. This indicates qualitatively that, in terms of the 
behavior of the HOMO, a destabilizing interaction associated 
with occupied fragment orbitals (cf. interaction 1 in Figure 1 
of ref 7f) is the dominant factor in both conformations. 

Figure 1. Schematic representation of the rr-type fragment orbitals in 
propylene. 

The data of Table II demonstrate that the gross populations 
of ircc and 7TCH3 are close to 2, and those of 7r*cc and 7T*CH, 
are small. The sum of the gross populations of the four group 
orbitals is 4, so that propylene is properly regarded as a 47r-
electron system. The sum of the gross populations of 7rcc and 
7T*CH j is 2. If it is supposed that the electron occupancies of TQC 
and TTCH3 were 2 prior to the orbital interaction between the 
methyl and vinyl fragments, then the gross populations of ir*cc 
and 7T*CH3 can be said to reflect the amount of electron charge 
transfer from 7TCH3 and TTCC, respectively, associated with the 
orbital interactions. It is within this context that the terms 
"four-electron destabilizing interaction between 7rcc and 
7TcH3" and "two-electron stabilizing interactions between 7TCH3 

and 7r*cc and between 7rcc and 7T*CH3" have meaning. 

As can be seen from the orbital energies, Table II also shows 
that the group orbitals of E are not exactly the same as those 
of S. However, the difference has no significant effect upon the 
PMO analysis, because the magnitudes Of (e0 _ po 

(eVcc - e°rcH3). and (e0
XCH3 

in both conformations.17 

_ p 0 
TCH3 ). e°ir*cH3) are virtually the same 

Table III. The Matrix Elements (A/, 
Orbitals in Propylene 

S,j), Interaction Energies (Ae,j, AE/j), and Overlap Populations (Qij) between the 7r-Type Fragment 

(* /° - <t>j°) 

(TCH 3
 — Tec) 

(TTCH3 — T * c c ) 

( i r c c - 7T*CH3) 

Conformation 

Eclipsed 
Staggered 
Eclipsed 
Staggered 
Eclipsed 
Staggered 

V 
au 

-0.0995 
-0.1026 
-0.0949 
-0.0904 
-0.0627 
-0.0546 

SiJ 

0.0998 
0.1041 
0.0988 
0.0933 
0.0694 
0.0606 

Ae,j, 

kcal/mol 

14.44 
15.41 

-2 .68 
-2 .54 
-1 .98 
-1 .50 

AE,j. 
au 

0.1902 
0.2085 

-0.1045 
-0.0967 
-0.0601 
-0.0462 

Qu 

-0.0192 
-0.0210 

0.0106 
0.0097 
0.0056 
0.0043 
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Table IV. The Computed" Total Energy of Ethane, and the 
Orbital Energies (e,0) and Gross Populations (g,-) of the ir-Type 
Fragment Orbitals 

Conformation 

S(S)* 

E(S)* 

S(E)' 

E(E)' 

Etot, au 

-78.306 14 

-78.301 49 

-78.305 78 

-78.301 52 

0,0 

""CH3 

X*CH 3 

TCH 3 

X*CH 3 

TCH 3 

X*CH 3 

TCH 3 

X*CH 3 

e,0, au 

-0.5217 
0.7060 

-0.5213 
0.7073 

-0.5208 
0.7062 

-0.5205 
0.7075 

Qi 

1.995 
0.005 
1.996 
0.004 
1.995 
0.005 
1.996 
0.004 

" STO-3G basis set. * rCc = 1.5452 A; rc» = 1.0858 A; /CCH = 
110.66°.'roc= 1.5587 A; rcH= 1.0849 A;/CCH = 111.02°. 

The orbital interaction energies Aey are calculated from eq 
64 and 65, using the orbital energies of Table II and the matrix 
elements Ay and Sy shown in Table III. The Aey values reveal 
that each of the orbital interactions (7rcc _

 TCH3), (TCC ~ 
T*CH3)> and (XCH3

 - x*cc) favors E over S by 0.97,0.48, and 
0.14 kcal/mol, respectively. The effect of these three orbital 
interactions, therefore, is to cause E to be more stable than S 
by 1.59 kcal/mol. This is very close to the 1.34 kcal/mol dif­
ference in the total energies of E and S that is obtained by the 
full SCF-MO calculations. We may conclude that the con­
sideration of the x-type orbital interactions between methyl 
and vinyl fragments does indeed represent a useful basis for 
the quantitative analysis of the conformation of propylene. The 
largest contribution to the methyl rotational barrier in pro­
pylene is made by (xcc — TCH3)- This is the interaction em­
phasized in Lowe's analysis.7^ The fact that each of (xcc _ 

TCH3), (TCC
 _

 T*CH3), and (XCH3
 _

 T*CC) favors E over S has 
also been pointed out by Hehre et al.7f from an inspection of 
the phase relationships between the interacting group orbit­
als. 

The results of the energy partitioning for the (xcc ~ TCH3)> 
(xcc - T*CH3),

 a n d
 (TCH3 - T*CC) pairs, denoted by A£y in 

Table III, reveal the same trends as found in Aey. For example, 
a positive or negative overlap population Qjj between two in­
teracting fragment orbitals corresponds respectively to a sta­
bilization or destabilization in both Aey and AEy. 

Ethane. The calculations just presented for propylene were 
performed within a rigid rotor model, using a minimal 
(STO-3G) basis set. However, this is not an obligatory pro­
cedure, because any internal mode of motion and any ab initio 
SCF-MO wave function can be subjected to the quantitative 
orbital interaction analysis. A standard computational ap­
proach, applicable to all problems, is not one of our objectives. 
For any specific problem the approach to be employed will 
depend, inter alia, upon the complexity of the system, the 
computational facilities that are available, and subjective 
considerations such as the level of computation deemed to be 
sufficient. 

The consequences of the rigid rotor approximation and the 
use of a minimal basis set have been examined in the study of 
the ethane rotational barrier. Four geometries were computed 
at both the STO-3G and 4-3IG levels; these geometries are 
designated S(S), E(S), S(E), and E(E), where S(S) refers to 
a fully optimized staggered conformation, and E(S) is the 
eclipsed conformation that results from a rigid rotation of S(S), 
etc.18 The results are summarized in Tables IV and V, for the 
STO-3G basis set, and in Tables VI and VII, for the 4-3IG 
basis set. 

As shown schematically in Figure 2, there is a degeneracy 
in the ir-type orbitals of the methyl fragments. Only one of 
these two sets of orbitals is listed in Tables IV-VII. Table IV 
shows that the methyl fragments have virtually the same or­
bital energies in each of the four conformations. In addition, 
a comparison of the e,0 values of Tables II and IV indicates the 
degree of transferability of the methyl fragment orbitals in the 
two molecules propylene and ethane. We observe that the gross 
population of XCH3 is almost 2 and that of X*CH3 is small. It 
is therefore appropriate to consider a "four-electron destabi­
lizing interaction energy" between the XCH3 orbitals of two 
bonded methyl fragments, as well as the "two-electron stabi­
lizing interaction energy" associated with the interaction be­
tween XCH3 of one methyl fragment and X*CH3 of the other. 
These are summarized in Table V. 

If the only interactions considered are those associated with 
XCH3 and X*CH3, the total of these amounts to two of (XCH3

 -

XCH3) and four of (XCH3
 -

 T*CH3) for each conformation. This 
leads to total orbital interaction energies of 30.84,28.82,27.56, 
and 25.84 kcal/mol for E(S), E(E), S(S), and S(E), respec­
tively. The methyl rotational barriers calculated from these 
interaction energies are 3.28 and 2.98 kcal/mol for the rigid 
rotation of S(S) and E(E), respectively. The corresponding 
barriers obtained from the total energies of the SCF-MO 
calculations are 2.92 and 2.67 kcal/mol, respectively. Thus, 
as in the case of propylene, the total energy behavior of the 
molecule is fairly well reproduced by the x-type orbital inter­
actions calculated within a rigid rotor model with an STO-3 G 
basis set. 

However, the difference in the total interaction energies of 
S(S) and E(E) is only 1.26 kcal/mol. This is significantly 
smaller than the corresponding difference in the total energies 
of these conformations, 2.90 kcal/mol. The poorer quantitative 
agreement in this case can be traced to the different optimized 
geometries of the eclipsed and staggered conformations.18,19 

The CC bond is longer and the CCH angles are larger in the 
eclipsed conformation. This decreases the interaction between 
the two methyl groups, and the magnitude of this effect can 
be seen in the Aey values of Table V. It is clear that (XCH3

 — 

XcH3) is less destabilizing, and (XCH3
 -

 X*CH3) is also less 
stabilizing when the eclipsed geometry is employed. The AEy 
and Aey values of Table V show the same trends. The gy 
values are also found to correlate with Aey and AEy in the 
same way as observed for propylene. 

Table V. The Matrix Elements, Interaction Energies, and Overlap Populations between the 7r-Type Fragment Orbitals in Ethane (STO-3G 
Basis Set) 

(0,0 - 0,0) 

(XCH 3
 - TCH 3 ) 

(XCH 3
 - X*CH 3 ) 

Conformation 

E(S) 
E(E) 
S(S) 
S(E) 
E(S) 
E(E) 
S(S) 
S(E) 

A,y. 
au 

-0.1182 
-0.1143 
-0.1136 
-0.1099 
-0.0615 
-0.0604 
-0.0703 
-0.0687 

Sij 

0.1188 
0.1150 
0.1131 
0.1095 
0.0646 
0.0638 
0.0760 
0.0746 

Ae/j, 
kcal/mol 

17.02 
15.93 
15.70 
14.72 

-0.80 
-0.76 
-0.96 
-0.90 

AE1J. 

au 

0.2537 
0.2202 
0.2141 
0.2002 

-0.0298 
-0.0284 
-0.0366 
-0.0347 

Qu 

-0.0283 
-0.0265 
-0.0254 
-0.0238 

0.0031 
0.0030 
0.0040 
0.0038 
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Table VI. The Computed Total Energy of Ethane" and the Orbital 
Energies and Gross Populations of the i-Type Fragment Orbitals 
(4-3IG Basis Set) 

Conformation */' e,0, au Q1' 

S(S)" 

E(S)" 

S(E)" 

E(E)* 

-79.115 93 

-79.111 30 

-79.115 72 

-79.111 52 

TCH1 

T*CH3 

TCH) 
T*CH, 
TCH3 

T*CH3 

TCH3 

T*CHj 

-0.5497 
0.30l8rf 

-0.5492 
0.3080 

-0.5482 
0.3027 

-0.5477 
0.3084 

2.000 
O.Oll 
2.004 
0.007 
2.000 
O.Oll 
2.004 
0.007 

"rCc = 1.5300 A;rCH = 1.0834 A;/CCH = 111.07°. * r c c = 
1.5412 A; rCH = 1.0828 A; ZCCH, 111.64°. ' Besides TCH3and T*C H , , 
the methyl fragment has two additional T-type fragment orbitals in 
the 4-31G basis set calculation. Each of these additional fragment 
orbitals is doubly degenerate and higher lying than T*CH3- The 4-31G 
basis set represents a valence atomic orbital by two Gaussian type 
functions (GTF) with different exponents. The expansion coefficients 
of these GTF's of a valence atomic orbital have opposite signs in the 
additional fragment orbitals, in contrast to H-CH3 and T*CH.V The sum 
of the gross populations of all ir-type fragment orbitals having the same 
symmetry is exactly 2. To simplify the discussion and permit com­
parison with the results of the STO-3G calculations, only TCH3 and 
T*CH3 are listed in Tables VI and VII. d The orbital energy of JT*C H3 
is approximately 0.7 au in the STO-3G basis set calculation (see Ta­
bles II and IV). 

The essential features of the 4-3IG calculations summarized 
in Tables VI and VII are exactly the same as those of the 
STO-3G calculations just discussed. From the Ae jj values the 
methyl rotational barriers are 4.46, 2.78, and 1.75 kcal/mol 
for the processes S(S) — E(S), S(E) — E(E), and S(S) — 
E(E), respectively. The corresponding barriers from the total 
energies of the SCF-MO calculations are 2.91, 2.64, and 2.77 
kcal/mol, respectively. 

In the STO-3G calculations, inspection of either Ae,y or AE1J 
reveals that the difference in the stabilities of the staggered and 
eclipsed conformations is dominated by the effect of the de­
stabilizing interactions (irCH3 — TCH 3 ) when rigid rotation is 
considered. But in the case of relaxed rotation S(S) -*• E(E), 
it is the change in the stabilizing interactions (TCH, — T*CH.I) 
which dominates. These findings parallel rather well the ob­
servation that the computed SCF-MO rotational barrier of 
ethane is "repulsive dominant" for rigid rotation and "at­
tractive dominant" for relaxed rotation.20 

The 4-3IG basis set calculations shown in Table VII do not 
display the same effects. When the Ae y values are considered, 
it is seen that the rotational barrier is dominated by the (TCH 3 

— TCH3) interactions for rigid rotation as before, but in the 
relaxed rotation, the effects of the (TCH 3

 — TCH3) and the 
(TCH 3

 — T*CH3) interactions are almost.the same. On the other 
hand, the AE,j values suggest that the (TCH 3

 - TCH3) and 

- © 

^ 5 
-H- © 

©0 
©0 

28 * 

gQ3 
0© 

TT 

Figure 2. Schematic representation of the 7r-type fragment orbitals in 
ethane. 

(TCH 3
 — T*CH 3 ) interactions contribute to the same extent to 

the energy difference between S(S) and E(S), but the (TCH 3 
— T*CH3) interaction is more important in the transformations 
S(E) — E(E) and S(S) -^ E(E). 

Summary and Conclusions 

The most advantageous feature of the PMO method is that 
it uniquely retains the chemically intuitive notion that the 
properties of a molecular system can be described in terms of 
interactions among its functional groups. In the present work, 
we have obtained the orbitals of a fragment within the 
framework of SCF-MO theory by solution of the formal ei­
genvalue problem defined in eq 46. The Fock matrix F-4 ofthe 
molecule which contains fragment A has been set equal to M^. 
The computational tests reveal that the fragment orbitals thus 
determined are nearly transferable from conformation to 
conformation, and from molecule to molecule, and that, with 
these fragment orbitals, the PMO method can be employed 
to interpret quantitatively the result of an SCF-MO compu­
tation. With this development, we believe that PMO analysis 
can now complement rigorously other procedures currently in 
use for the interpretation of ab initio computations. These in­
clude energy component analysis,21 bond energy analysis,22 

charge density analysis,23 and localized molecular orbital 
analysis.24 

Finally, we wish to emphasize that we have purposely re­
stricted the computational examples of the present work to 
ethane and propylene. A quantitative analysis ofthe torsional 
behavior of these two hydrocarbons seemed quite properly to 
represent the starting point for the presentation of a quanti­
tative method for the analysis of conformational effects. In 
addition, the previous, qualitative, treatments of these same 
systems have been straightforward and noncontroversial, and 
there is a close correspondence between the language employed 
in the qualitative work and the interpretation given to the 
present quantitative results. Certain, relatively subtle, prop­
erties of the total energy can be reproduced by the quantitative 
PMO analysis. It remains to be determined whether there is 
some fundamental theoretical explanation for the finding that 
the total energy behavior of a molecular system can be repro­
duced so well by a quantitative consideration of ir-type inter-

Table VII. The Matrix Elements, Interaction Energies, and Overlap Populations between the x-Type Fragment Orbitals in Ethane (4-3IG 
Basis Set) 

(0,0 - 0,0) 

(TCH3 — TCH3) 

(TCH3 — T*CH3) 

Conformation 

E(S) 
E(E) 
S(S) 
S(E) 
E(S) 
E(E) 
S(S) 
S(E) 

V 
au 

-0.1470 
-0.1425 
-0.1410 
-0.1390 
-0.0946 
-0.0949 
-0.1163 
-0.1167 

Sij 

0.1649 
0.1602 
0.1575 
0.1555 
0.1507 
0.1521 
0.1824 
0.1841 

Ae ij. 
kcal/mol 

24.01 
22.60 
22.07 
21.50 
-0.21 
-0.20 
-0.38 
-0.36 

AE1J, 
au 

0.4329 
0.4072 
0.3866 
0.3764 

-0.0536 
-0.0520 
-0.0762 
-0.0749 

Qu 

-0.0542 
-0.0511 
-0.0482 
-0.0470 

0.0065 
0.0063 
0.0096 
0.0095 
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actions alone. This finding is not restricted to the simple sys­
tems of the present work, but has also been observed in the 
quantitative PMO analysis of a large number of molecules 
containing multiple bonds and heteroatoms, which will form 
the subject of future ppp^rs. The qualitative analyses of some 
of these systems has led to controversy. This is not surprising, 
because the quantitative balance between attractive and re­
pulsive effects is difficult to assess using qualitative arguments. 
The quantitative analysis, which is more objective, will hope­
fully permit a resolution of these controversies. 
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